
UNIT - I

❖ Introduction to Android Application and History

Android is an open source and Linux-based Operating System for mobile devices such

as smartphones and tablet computers. Android was developed by the Open Handset

Alliance, led by Google, and other companies.

Android offers a unified approach to application development for mobile devices which

means developers need only develop for Android, and their applications should be able

to run on different devices powered by Android.

The first beta version of the Android Software Development Kit (SDK) was released by

Google in 2007 where as the first commercial version, Android 1.0, was released in

September 2008.

On June 27, 2012, at the Google I/O conference, Google announced the next Android

version, 4.1 Jelly Bean. Jelly Bean is an incremental update, with the primary aim of

improving the user interface, both in terms of functionality and performance.

The source code for Android is available under free and open source software licenses.

Google publishes most of the code under the Apache License version 2.0 and the rest,

Linux kernel changes, under the GNU General Public License version 2.

History of Android

The history of Android is a fascinating journey that spans several decades,

characterized by innovation, collaboration, and evolution. From its humble beginnings,

when it was competing with Nokia’s mobile OS Symbian, the Windows Phone OS, and

Blackberry OS, to its dominant position in the mobile operating system market, Android

has significantly influenced how we interact with technology.

Here’s an in-depth look at the history of Android:

1. Early origins and development (2003-2007)

The story of Android began in 2003 when Andy Rubin, Rich Miner, Nick Sears, and

Chris White founded Android Inc. in Palo Alto, California. Their initial goal was to

develop an advanced operating system for digital cameras. However, recognizing the

potential of their project, they shifted their focus to creating an operating system for

mobile devices.

2. Acquisition by Google (2005)

In 2005, Google, led by then-CEO Eric Schmidt, acquired Android Inc., laying the

groundwork for what would become one of the most significant developments in the

mobile industry. Google’s acquisition of Android signaled its entry into the rapidly

growing smartphone market and set the stage for developing a new mobile operating

system.

3. Open Handset Alliance and the launch of Android (2007)

On November 5, 2007, the Open Handset Alliance (OHA) was unveiled. It comprised

several prominent technology companies, including Google, HTC, Samsung, Motorola,

and others. The OHA aimed to develop open standards for mobile devices and

promote innovation in the mobile industry. Shortly after, on November 5, 2007, Google

announced the first beta version of the Android operating system.

4. Android 1.0 and the first Android device (2008)

The first commercial version of Android, Android 1.0, was released on September 23,

2008. The HTC Dream, also known as T-Mobile G1, was the first smartphone to run on

the Android operating system. The HTC Dream featured a touchscreen interface, a

physical keyboard, and access to Google services such as Gmail, Maps, and YouTube.

Since its initial release, Android has undergone significant evolution with regular

updates and new versions introduced to the market, as we will discuss later. The

developer preview of Android 15 has been launched in 2024.

5. Growth and dominance in the mobile market

Over the years, Android has experienced tremendous growth, rapidly becoming the

world’s most popular mobile operating system. According to Statcounter, as of January

2022, Android holds over 72% of the global mobile operating system market share, far

surpassing its competitors.

❖ Key Features of Android

Android is an open-source operating system, based on the Linux kernel and used in

mobile devices like smartphones, tablets, etc. Further, it was developed for

smartwatches and Android TV. Each of them has a specialized interface. Android has

been one of the best-selling OS for smartphones. Android OS was developed by

Android Inc. which Google bought in 2005.

Android offers a wide array of functionalities catering to both users and developers.

Some of the key features of Android include:

• Open-source platform: Android is built on an open-source Linux kernel, allowing

developers to access the source code, modify it, and contribute to its

development. This openness fosters innovation and collaboration within the

Android ecosystem.

• Customizable user interface: Android provides users with the ability to customize

their device’s user interface, including wallpapers, themes, widgets, and

launchers. Users can personalize their devices to suit their preferences and style.

This feature sets it apart from its closest competitor, iOS.

• Multitasking: Android supports multitasking, allowing users to run multiple apps

simultaneously, switch between them seamlessly, and perform various tasks

simultaneously. Users can also use split-screen mode to view two apps side by

side.

• Google Play Store: Android users can access the Google Play Store, which offers

a vast catalog of apps, games, movies, music, books, and more. The Play Store

provides users a centralized platform to discover, download, and install content

for their devices.

https://www.spiceworks.com/it-security/network-security/articles/top-10-linux-firewall-solutions/

• Google Assistant: Android devices come with Google Assistant, a virtual assistant

powered by artificial intelligence. Google Assistant can perform various tasks,

answer questions, provide recommendations, and control smart home devices

using voice commands.

• Security features: Android incorporates various security features to protect

users’ data and privacy. These features include app sandboxing, secure boot,

encrypted file systems, Google Play Protect, and regular security updates from

device manufacturers.

• Accessibility: Android includes a wide range of accessibility features to

accommodate users with disabilities or special needs. These features include

screen readers, magnification gestures, color inversion, text-to-speech, and

more.

• Google Services integration: Android devices seamlessly integrate with Google

services such as Gmail, Google Maps, Google Drive, Google Photos, and others.

This integration provides users access to a suite of productivity tools,

communication services, and cloud storage options.

• Development tools and support: Android provides developers with

comprehensive development tools, including Android Studio, the

official integrated development environment (IDE) for Android app

development. Developers can also access extensive documentation, APIs,

libraries, and resources to build high-quality apps for Android devices.

❖ Different Apps in android

Some Categories of the Android Applications:

1. E-Commerce Apps: E-commerce apps are an example of a B2B model. It helps

to people to sell and borrow different items and it saves time and money. In e-

commerce applications, we can do trading of commercial goods on online

marketplaces. To buy specific items and goods, you simply need to make

electronic transactions like UPI, Phonepe, etc. through your smartphone or

computer. Flipkart, Amazon, OLX, and, Quiker are examples of e-commerce

applications.

2. Educational Apps: Educational apps are too much used to improve knowledge

and peoples get productivity. Apps for education can make people more

interactive, more engaged, and perform better. Keeping teaching methods good

is integral to getting students engaged in their studies and learning apps are a

https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-ai/
https://www.spiceworks.com/tech/devops/articles/what-is-ide/

fantastic way of achieving this. For example, Google Classroom, SoloLearn, edX,

Duolingo, etc.

3. Social Media Apps: Social media apps give the opportunity to the peoples

connect and communicate together. These apps are mainly used for sharing

purposes and making fun. Many peoples use social media applications for

influence, marketing/ business, entrepreneurship, etc. Instagram, Facebook,

WhatsApp, YouTube, LinkedIn, etc. are examples of social media applications.

4. Productivity Apps: Productivity apps typically organize and complete complex

tasks for you, anything from sending an email to figuring out a tip. The easy-to-

use Google Drive app gives users access to all of the files saved to the cloud-

based storage service across multiple devices. Productivity applications arise in

many different forms and they often take a different approach to improving your

workflow. For example, Hive, Todoist, Google Docs, etc.

5. Entertainment Apps: Entertainment apps are widely used apps worldwide. It

contains OTT platforms and novels and other content. These platforms entertain

people and give them much more knowledge about different things. Everyone is

watching OTT platforms and those are trending these days, and their

development is also in demand all over the world. Hotstar, Netflix, and Amazon

prime video are the best examples of this entertainments applications.

❖ Android Versions

Android has evolved through various versions since its inception. Each version brings

new features, enhancements, and optimizations to the platform. Here is a list of the

major Android versions released to date:

• Android 1.0 (Astro): The initial version of Android was released on September 23,

2008. It introduced basic functionalities such as web browsing, camera support,

and access to Google services like Gmail and Google Maps.

• Android 1.1 (Bender): Released on February 9, 2009, Android 1.1 included minor

updates and bug fixes to improve system stability and performance.

• Android 1.5 (Cupcake): Introduced on April 27, 2009, Android 1.5 brought

significant improvements, such as an on-screen keyboard, support for third-

party widgets, and video recording capabilities.

• Android 1.6 (Donut): Released on September 15, 2009, Android 1.6 featured

updates to the user interface, improved search functionality, and support for

CDMA networks.

• Android 2.0/2.1 (Eclair): Android 2.0 and 2.1, known collectively as Eclair, were

released on October 26, 2009. Eclair introduced features such as multiple

account support, Bluetooth 2.1, and an updated web browser.

• Android 2.2 (Froyo): Released on May 20, 2010, Android 2.2 (Froyo) introduced

significant performance improvements, support for Adobe Flash Player, and the

ability to install apps on external storage.

• Android 2.3 (Gingerbread): Introduced on December 6, 2010, Android 2.3

(Gingerbread) focused on refining the user interface, improving gaming

performance, and adding support for near field communication (NFC).

• Android 3.0/3.1/3.2 (Honeycomb): Android 3.0 (Honeycomb) was released on

February 22, 2011, and was specifically designed for tablets. It featured a

redesigned user interface, support for multicore processors, and improved

multitasking capabilities.

• Android 4.0 (Ice Cream Sandwich): Released on October 18, 2011, Android 4.0

(Ice Cream Sandwich) merged the tablet and smartphone versions of Android. It

introduced features such as a new user interface, enhanced multitasking, and

support for facial recognition.

• Android 4.1/4.2/4.3 (Jelly Bean): Android 4.1 (Jelly Bean) was released on July 9,

2012, followed by subsequent updates 4.2 and 4.3. Jelly Bean introduced

features such as improved performance, enhanced notifications, and support for

multiple user accounts on tablets.

• Android 4.4 (KitKat): Released on October 31, 2013, Android 4.4 (KitKat) focused

on optimizing the operating system for low-end devices. It introduced features

such as improved memory management, a new dialer app, and support for

cloud printing.

• Android 5.0/5.1 (Lollipop): Android 5.0 (Lollipop) was released on November 12,

2014, followed by updates to 5.1. Lollipop introduced the Material Design

language, improved performance, enhanced security features, and support for

64-bit processors.

• Android 6.0 (Marshmallow): Released on October 5, 2015, Android 6.0

(Marshmallow) introduced features such as app permissions, Google Now on

Tap, and a new battery-saving feature called Doze.

• Android 7.0/7.1 (Nougat): Android 7.0 (Nougat) was released on August 22, 2016,

followed by updates to 7.1. Nougat introduced features such as split-screen

multitasking, enhanced notifications, and support for Daydream VR.

https://www.spiceworks.com/tech/networking/articles/what-is-near-field-communication/

• Android 8.0/8.1 (Oreo): Android 8.0 (Oreo) was released on August 21, 2017,

followed by updates to 8.1. Oreo introduced features, such as picture-in-picture

mode, notification dots, and improved battery life, through background app

limitations.

• Android 9 (Pie): Released on August 6, 2018, Android 9 (Pie) introduced features

such as gesture-based navigation, adaptive battery, and digital wellbeing tools

to help users monitor their smartphone usage.

• Android 10: Released on September 3, 2019, Android 10 introduced features such

as a system-wide dark mode, improved privacy controls, and support for

foldable smartphones.

• Android 11: Released on September 8, 2020, Android 11 focused on enhancing

communication, privacy, and control with features like chat bubbles, one-time

permissions, and improved media controls.

• Android 12: Released on October 4, 2021, Android 12 introduced a major visual

overhaul with Material You design language, enhanced privacy features, and

performance improvements.

• Android 13: Android 13 focused on user privacy with features like a photo picker

and notification permission settings. Building on Android 12’s tablet

optimizations, Android 13 enhances system UI, multitasking, and compatibility

modes.

• Android 14: Released on October 4, 2023, Android 14 enhances accessibility with

features like 200% font scaling and customizable lock screens. Additionally, it

introduces support for lossless audio formats and an improved magnifier for

low-vision users.

• Android 15: It is the upcoming iteration of the Android operating system, slated

for release in early 2025. It introduces advanced encryption features for secure

data storage and transmission, among other features.

❖ Android Architecture

The Android architecture is a layered structure that defines the components and

interactions within the Android operating system.

1. Linux kernel layer

At the core of the Android architecture lies the Linux kernel, which provides essential

hardware abstraction, memory management, process management, security,

and device drivers. The Linux kernel serves as the foundation upon which the Android

operating system is built, offering low-level functionalities that interact directly with the

underlying hardware components of the device.

Key features of the Linux kernel layer in the Android architecture include:

• Hardware abstraction: The Linux kernel abstracts hardware functionalities,

allowing the upper layers of the Android stack to interact with hardware

components through standardized interfaces.

• Process management: The Linux kernel manages processes and threads,

allocating system resources such as CPU time, memory, and input/output

operations.

• Memory management: The Linux kernel handles memory allocation, virtual

memory management, and memory protection to ensure efficient utilization of

system resources.

• Security mechanisms: The Linux kernel enforces security policies through access

control mechanisms, permissions, and secure execution environments.

https://www.spiceworks.com/tech/devops/articles/what-is-device-driver/

• Device drivers: The Linux kernel provides device drivers to facilitate

communication between the operating system and hardware peripherals, such

as display drivers, camera drivers, input/output drivers, and network drivers.

2. Hardware abstraction layer (HAL)

Above the Linux kernel layer resides the HAL, which abstracts hardware-specific

functionalities and provides standardized interfaces for device drivers and hardware

components. The HAL enables device manufacturers to develop drivers for specific

hardware configurations while ensuring compatibility with the Android framework.

Key components of the hardware abstraction layer include:

• HAL modules: HAL modules encapsulate hardware-specific functionalities, such

as camera, audio, display, sensors, and input devices, into standardized

interfaces accessible to higher-level software layers.

• Interface definitions: The HAL defines standardized interfaces, known as

Hardware Abstraction Interfaces (HAIs), which specify the methods and

parameters for interacting with hardware components.

• Vendor-specific implementations: Device manufacturers like Samsung or Huawei

provide vendor-specific implementations of HAL modules tailored to their

hardware configurations, ensuring seamless integration with the Android

framework.

3. Native libraries layer

The native libraries layer consists of libraries written in C and C++ programming

languages that provide core system functionalities and support for native code

execution within Android applications. These libraries augment the capabilities of the

Java-based Android framework and enable developers to access low-level system

resources and hardware features.

Key native libraries in the Android architecture include:

• libc: The C standard library provides fundamental programming utilities and

functions for memory management, string manipulation, input/output

operations, and system calls.

• libm: The Math library contains mathematical functions and operations,

including arithmetic, trigonometric, exponential, and logarithmic functions.

• libz: The Zlib library implements data compression and decompression

algorithms, facilitating file compression and decompression operations within

Android applications.

https://www.spiceworks.com/tech/devops/articles/c-vs-cplus/
https://www.spiceworks.com/tech/devops/articles/c-vs-cplus/

• libjpeg/libpng: These libraries provide support for image processing and

manipulation, including JPEG and PNG image format decoding and encoding.

• OpenGL/OpenGL ES: The OpenGL (for desktop) and OpenGL ES (for embedded

systems) libraries enable hardware-accelerated graphics rendering and 3D

rendering within Android applications.

4. Android runtime layer

The Android runtime (ART) layer is responsible for executing and managing Android

applications bytecode compiled from Java or Kotlin source code. ART employs ahead-

of-time (AOT) compilation to convert bytecode into native machine code, enhancing

runtime performance and reducing memory overheads.

Key components of the Android Runtime layer include:

• ART compiler: The ART compiler translates bytecode into native machine code

during the installation or upgrade of Android applications, improving runtime

performance and efficiency.

• Dalvik virtual machine (legacy): In earlier versions of Android, the Dalvik virtual

machine executed bytecode in the form of Dalvik Executable (DEX) files. Dalvik

employed just-in-time (JIT) compilation to convert bytecode into native code at

runtime.

5. Java API framework layer

The Java application programming interface (API) framework layer comprises a

comprehensive set of libraries, APIs, and runtime environments that facilitate the

development of Android applications using Java or Kotlin programming languages.

The Java API Framework exposes high-level functionalities and system services to

developers, enabling them to create rich, interactive, and feature-rich applications. Key

components of the Java API Framework layer include:

• Android software development kit (SDK): The Android SDK provides a collection

of development tools, libraries, sample code, and documentation for building

Android applications. It includes the Android Debug Bridge (ADB), Android

Studio IDE, Android Emulator, and various command-line utilities.

• Core libraries: The core libraries contain essential classes and packages for

application development, including data structures, utilities, I/O operations,

networking, graphics, and user interface components.

• Android framework APIs: The Android framework APIs expose system-level

functionalities and services, such as activity management, resource handling,

https://www.spiceworks.com/tech/devops/articles/what-is-virtual-machine/
https://www.spiceworks.com/tech/devops/articles/what-is-virtual-machine/
https://www.spiceworks.com/tech/devops/articles/application-programming-interface/

content providers, intents, services, and user interface components (views,

layouts, widgets).

6. Application layer

At the topmost layer of the Android architecture is the application layer, which consists

of user-installed applications, system applications, and system services running on the

Android platform. This layer encompasses a diverse range of applications, including

productivity tools, multimedia players, games, social networking apps, communication

apps, and more.

❖ Android Activity Lifecycle

In Android, an activity is referred to as one screen in an application. It is very similar to

a single window of any desktop application. An Android app consists of one or more

screens or activities.

Each activity goes through various stages or a lifecycle and is managed by activity

stacks. So when a new activity starts, the previous one always remains below it. There

are four stages of an activity.

https://www.spiceworks.com/tech/devops/articles/what-are-apps/#:~:text=An%20app%20is%20packaged%20software,meant%20for%20end%2Duser%20consumption.
https://www.geeksforgeeks.org/android-app-development-fundamentals-for-beginners/

Android activities have a specific lifecycle that they go through as the user interacts with

them. Understanding the activity lifecycle is crucial for developing robust and responsive

Android apps. In this post, we will go over the various states that an activity can be in

and the corresponding methods that are called during those states.

The activity lifecycle is composed of the following states:

1. onCreate(): This method is called when the activity is first created. It is

responsible for initializing the activity’s UI, such as inflating the layout and

finding the views.

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 //initialize views and other UI related tasks

}

2. onStart(): This method is called when the activity becomes visible to the user. It is a

good place to start animations and other visual changes.

@Override

protected void onStart() {

 super.onStart();

 //start animations and other visual changes

}

3. onResume(): This method is called when the activity becomes the foreground activity.

It isthe state in which the user can interact with the activity. This is where you should

register any listeners or start any services that need to be running while the activity is in

the foreground.

@Override

protected void onResume() {

 super.onResume();

 //register listeners and start services

}

4.onPause(): This method is called when the activity is no longer the foreground activity.

It is a good place to unregister listeners, save any data that needs to be saved, and stop

any services that don’t need to be running in the background.

@Override

protected void onPause() {

 super.onPause();

 //unregister listeners, save data and stop services

}

5. onStop(): This method is called when the activity is no longer visible to the user. It is a

good place to stop animations and other visual changes.

@Override

protected void onStop() {

 super.onStop();

 //stop animations and other visual changes

}

6.onDestroy(): This method is called when the activity is about to be destroyed. It is a

good place to release any resources and clean up any remaining data.

@Override

protected void onDestroy() {

 super.onDestroy();

 //release resources and clean up data

}

It’s important to note that an activity can also be in a “stopped” state if it is temporarily

obscured by another activity, but it will still retain its state and not be destroyed. In this

case, the onStop() method will be called, but not onDestroy(). The onRestart() method

will be called when the activity becomes visible again.

@Override

protected void onRestart() {

 super.onRestart();

 //refresh data or perform any other necessary tasks

}

In conclusion, the activity lifecycle is an important aspect of Android development and

understanding the various states and methods that are called during those states can

help you create more robust and responsive apps. It’s important to remember that the

activity can be in different states depending on the actions of the user and it’s crucial to

handle the data and resources accordingly.

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toast toast = Toast.makeText(getApplicationContext(), "onCreate

Called", Toast.LENGTH_LONG).show();

 }

 protected void onStart() {

 super.onStart();

 Toast toast = Toast.makeText(getApplicationContext(), "onStart

Called", Toast.LENGTH_LONG).show();

 }

 @Override

 protected void onRestart() {

 super.onRestart();

 Toast toast = Toast.makeText(getApplicationContext(), "onRestart

Called", Toast.LENGTH_LONG).show();

 }

 protected void onPause() {

 super.onPause();

 Toast toast = Toast.makeText(getApplicationContext(), "onPause

Called", Toast.LENGTH_LONG).show();

 }

 protected void onResume() {

 super.onResume();

 Toast toast = Toast.makeText(getApplicationContext(), "onResume

Called", Toast.LENGTH_LONG).show();

 }

 protected void onStop() {

 super.onStop();

 Toast toast = Toast.makeText(getApplicationContext(), "onStop Called",

Toast.LENGTH_LONG).show();

 }

 protected void onDestroy() {

 super.onDestroy();

 Toast toast = Toast.makeText(getApplicationContext(), "onDestroy

Called", Toast.LENGTH_LONG).show();

 }

}

❖ Install Android Studio on Windows

Android Studio System Requirements for Windows

• Microsoft Windows 7/8/10 (32-bit or 64-bit)

• 4 GB RAM minimum, 8 GB RAM recommended (plus 1 GB for the Android

Emulator)

• 2 GB of available disk space minimum, 4 GB recommended (500 MB for IDE

plus 1.5 GB for Android SDK and emulator system image)

• 1280 x 800 minimum screen resolution

Steps to Install Android Studio on Windows

Step 1: Head over to this link (https://developer.android.com/studio/#downloads) to

get the Android Studio executable or zip file.

Step 2: Click on the Download Android Studio Button.

this%20link
https://developer.android.com/studio/#downloads

Click on the “I have read and agree with the above terms and conditions” checkbox

followed by the download button.

Click on the Save file button in the appeared prompt box and the file will start

downloading.

Step 3: After the downloading has finished, open the file from downloads and run it. It

will prompt the following dialog box.

Click on next. In the next prompt, it’ll ask for a path for installation. Choose a path and

hit next.

Step 4: It will start the installation, and once it is completed, it will be like the image

shown below.

Click on next.

Step 5: Once ” Finish ” is clicked, it will ask whether the previous settings need to be

imported [if the android studio had been installed earlier], or not. It is better to

choose the ‘Don’t import Settings option’.

Click the OK button.

Step 6: This will start the Android Studio.

Meanwhile, it will be finding the available SDK components.

Step 7: After it has found the SDK components, it will redirect to the Welcome dialog

box.

Click on Next .

Choose Standard and click on Next. Now choose the theme, whether the Light theme

or the Dark one. The light one is called the IntelliJ theme whereas the dark theme is

called Dracula . Choose as required.

Click on the Next button.

Step 8: Now it is time to download the SDK components.

Click on Finish. Components begin to download let it complete.

The Android Studio has been successfully configured. Now it’s time to launch and

build apps. Click on the Finish button to launch it.

Step 9: Click on Start a new Android Studio project to build a new app.

To run your first android app in Android Studio you may refer to Running your first

Android app.

https://www.geeksforgeeks.org/android-running-your-first-android-app/
https://www.geeksforgeeks.org/android-running-your-first-android-app/

❖ First Android Application

Let us start actual programming with Android Framework. Before you start writing your

first example using Android SDK, you have to make sure that you have set-up your

Android development environment properly as explained in Android - Environment

Set-up tutorial. I also assume that you have a little bit working knowledge with Android

studio.

So let us proceed to write a simple Android Application which will print "Hello World!".

Create Android Application

The first step is to create a simple Android Application using Android studio. When you

click on Android studio icon, it will show screen as shown below

You can start your application development by calling start a new android studio

project. in a new installation frame should ask Application name, package information

and location of the project.−

https://www.tutorialspoint.com/android/android_environment_setup.htm
https://www.tutorialspoint.com/android/android_environment_setup.htm

After entered application name, it going to be called select the form factors your

application runs on, here need to specify Minimum SDK, in our tutorial, I have declared

as API23: Android 6.0(Mashmallow) −

The next level of installation should contain selecting the activity to mobile, it specifies

the default layout for Applications.

At the final stage it going to be open development tool to write the application code.

Anatomy of Android Application

Before you run your app, you should be aware of a few directories and files in the

Android project −

Sr.No. Folder, File & Description

1 Java

This contains the .java source files for your project. By default, it includes

an MainActivity.java source file having an activity class that runs when

your app is launched using the app icon.

2 res/drawable-hdpi

This is a directory for drawable objects that are designed for high-density

screens.

3 res/layout

This is a directory for files that define your app's user interface.

4 res/values

This is a directory for other various XML files that contain a collection of

resources, such as strings and colours definitions.

5 AndroidManifest.xml

This is the manifest file which describes the fundamental characteristics of

the app and defines each of its components.

6 Build.gradle

This is an auto generated file which contains compileSdkVersion,

buildToolsVersion, applicationId, minSdkVersion, targetSdkVersion,

versionCode and versionName

Following section will give a brief overview of the important application files.

The Main Activity File

The main activity code is a Java file MainActivity.java. This is the actual application file

which ultimately gets converted to a Dalvik executable and runs your application.

Following is the default code generated by the application wizard for Hello

World! application −

package com.example.helloworld;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

Here, R.layout.activity_main refers to the activity_main.xml file located in

the res/layout folder. The onCreate() method is one of many methods that are figured

when an activity is loaded.

The Manifest File

Whatever component you develop as a part of your application, you must declare all its

components in a manifest.xml which resides at the root of the application project

directory. This file works as an interface between Android OS and your application, so if

you do not declare your component in this file, then it will not be considered by the OS.

For example, a default manifest file will look like as following file −

<?xml version="1.0" encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.tutorialspoint7.myapplication">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"

/>

 <category

android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Here <application>...</application> tags enclosed the components related to the

application. Attribute android:icon will point to the application icon available

under res/drawable-hdpi. The application uses the image named ic_launcher.png

located in the drawable folders

The <activity> tag is used to specify an activity and android:name attribute specifies the

fully qualified class name of the Activity subclass and the android:label attributes

specifies a string to use as the label for the activity. You can specify multiple activities

using <activity> tags.

The action for the intent filter is named android.intent.action.MAIN to indicate that this

activity serves as the entry point for the application. The category for the intent-filter is

named android.intent.category.LAUNCHER to indicate that the application can be

launched from the device's launcher icon.

The @string refers to the strings.xml file explained below.

Hence, @string/app_name refers to the app_name string defined in the strings.xml file,

which is "HelloWorld". Similar way, other strings get populated in the application.

Following is the list of tags which you will use in your manifest file to specify different

Android application components −

• <activity>elements for activities

• <service> elements for services

• <receiver> elements for broadcast receivers

• <provider> elements for content providers

The Strings File

The strings.xml file is located in the res/values folder and it contains all the text that

your application uses. For example, the names of buttons, labels, default text, and

similar types of strings go into this file. This file is responsible for their textual content.

For example, a default strings file will look like as following file −

<resources>

 <string name="app_name">HelloWorld</string>

 <string name="hello_world">Hello world!</string>

 <string name="menu_settings">Settings</string>

 <string name="title_activity_main">MainActivity</string>

</resources>

The Layout File

The activity_main.xml is a layout file available in res/layout directory, that is referenced

by your application when building its interface. You will modify this file very frequently

to change the layout of your application. For your "Hello World!" application, this file

will have following content related to default layout −

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:padding="@dimen/padding_medium"

 android:text="@string/hello_world"

 tools:context=".MainActivity" />

</RelativeLayout>

This is an example of simple RelativeLayout which we will study in a separate chapter.

The TextView is an Android control used to build the GUI and it have various attributes

like android:layout_width, android:layout_height etc which are being used to set its

width and height etc.. The @string refers to the strings.xml file located in the res/values

folder. Hence, @string/hello_world refers to the hello string defined in the strings.xml

file, which is "Hello World!".

Running the Application

Let's try to run our Hello World! application we just created. I assume you had created

your AVD while doing environment set-up. To run the app from Android studio, open

one of your project's activity files and click Run icon from the tool bar. Android studio

installs the app on your AVD and starts it and if everything is fine with your set-up and

application, it will display following Emulator window −

Congratulations!!! you have developed your first Android Application.

